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Non-dimensional parameters provide insightful and
compact characterization of myriad physical
phenomena. Over a century after its publication,
Lord Rayleigh’s “similitude” method of dimensional
analysis remains powerful and relevant, perhaps
with applications to the emerging science of artificial
intelligence. And three centuries after the
publication of Principia, Isaac Newton’s gravitation
and conic-section orbits continue big roles in our
lives.

This presentation reviews and renews the synthesis
and application of non-dimensional parameters,
including for illustration empirical or theoretical
characterization of wing aerodynamic lift, gear
aerodynamic windage, and conic-section or
Keplerian orbits. Throughout the presentation we’ll
describe the interesting physics of the chosen
phenomena as we borrow from, and build upon, the
work of Rayleigh and Newton.
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The presentation describes two methods
to derive and/or apply non-dimensional
parameters to efficiently and insightfully
characterize physical phenomena. These
methods can be named empirical or
analytical. We’'ll first review and renew
Rayleigh’s similitude method of finding
empirical exponents. We’ll then coast, in
more ways than one, as we review and
renew Newton’s conic-section orbits,
applying the patched-conic
approximation to study the Apollo lunar
free-return trajectory.




Introduction to Non-dimensional Characterization

* Compact characterization of physical phenomena
— Prevent exponential growth of the test matrix

* Avoid “Mars Lander” mixed and/or ambiguous units

* Two or more variables form a non-dimensional group

* Simple example: circle circumference & diam., ©= =C/D

*  Well-known example: Reynolds number = pvc/pu
— fluid density (p), velocity (v), length (c), & viscosity (p)

* Myriad applications (some below included herein):
— Motor-generator torque, speed, & current!

Aerodynamic lift and drag coefficients
Conic-orbital position, velocity, and time?
Gear geometry, mesh loss, & windage?

A woN e

Dynamic-soaring flight mechanics*
Heat transfer3, tribology, ...

Barnes, J.P.,
Barnes, J.P.,
Barnes, J.P.,
Barnes, J.P.,

AIAA 2016-4711, Principles of High-efficiency Electric Flight, 2016

AAS 87-537, Relating Conic-section Orbital Position, Velocity and Time From Periapsis as Dimensionless Quantities, 1987
AGMA 97FTM11, Non-dimensional Characterization of Gear Geometry, Mesh Loss, and Windage, 1997

SAE 2004-01-3088, How Flies the Albatross - the Flight Mechanics of Dynamic Soaring, 2004
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Non-dimensional  parameters offer many
benefits, including compact characterization.
Consider a test matrix with just two variables,
both of which may have non-linear effects. This
may require up to eight test points to
characterize, and if necessary modestly
extrapolate, the test results. Then adding more
variables the test matrix grows exponentially.
Taking advantage of non-dimensional
parameters, the test matrix remains
comprehensive with far greater economy.

Perhaps the world’s oldest, well-known
dimensionless parameter is “n” representing of
course a circle’s circumference-to-diameter ratio.
A relatively modern parameter is the Reynolds
number, affecting fluid dynamics and heat
transfer. Myriad applications of non-dimensional
parameters include the three studies in this
presentation.
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Rayleigh’s “Similitude” parameter synthesis
Application: Empirical study of wing aerodynamic lift
Assume lift (L) depends on angle of attack (o), mid-chord

sweep (A), air density (p), airspeed (v), air viscosity (u), speed
of sound (a), span (b), and average chord (c).

Rayleigh’s Principle of Similitude (Nature 1915) would suggest:
L=f(a,Ap,v,b,uac) ~ e, p v b p*t a*2 c*3

Exclude for now already-dimensionless terms (o, A)

Arbitrarily select (p, v, b) as “primary affectors,” with
a non-singular units matrix for “auxiliary affectors”
(p, @, c) ; Then solve for the “auxiliary” exponents (x;) A
in terms of the yet-unknown empirical exponents (e;)
b |

so that Rayleigh’s formula obtains dimensions of lift |

unit o) b c L
kg 1 0 0 1 0 0 1
m =8 1 =il 1 1
s 0 -1 0 =il -1 0 -2
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Rayleigh’s “similitude” method, circa 1915, condenses typically six
dimensional “affectors”* into three non-dimensional groups. This
dramatically reduces the scope of test data needed to empirically
characterize the system at hand. Rayleigh postulates that a
“keystone” entity (aero lift in the present example) is proportional to
a series product of all suspected affectors, each raised to some
exponent, such that the series product obtains the same units as the
keystone entity. Typically three affectors together including units of
mass, length, and time are arbitrarily selected as “primary” and three
others then as “secondary or auxiliary.” If a temperature difference
applies it becomes a fourth auxiliary affector. Later operations allow
optional re-arrangement to draw from experience and the “artistic”
aspect of the method’s “art and science” duality.

A units table is constructed, as shown above, and the “auxiliary”
portion thereof must represent a non-singular rank-3 or rank-4
matrix. Subsequent matrix operations then solve for the auxiliary
exponents (x,) in terms of the yet-unknown empirical exponents (e;).
Test data then reveals the typically non-integer empirical exponents.
Often the empirical factor (e,) plays no visible role, as herein for our
study of gear aero windage.

The “renew” aspects of our “review” of Rayleigh’s method include
distinguishing primary from secondary entities, demonstration of
matrix operations, and introduction of “artistic” operations, including
group re-arrangement options and ways to handle already-
dimensionless affectors, in this case (o, A).

* Not to be confused with the medical term “effector”




Rayleigh’s “Similitude” dimensional analysis, continued 1
Application: Empirical study of wing aerodynamic lift

To ensure dimensional consistency, arrange all exponents in a
set of equations, one for each applicable unit (kg, meter, sec):

p v b i) a c L
kg: (1)e, + (0)e, + (0)es + (1)x, + (0)x, + (0)x; = 1
m: (-3)e; + (1)e, + (1) ey + ((1)x, + (1)x, + (1) x5 =1
s: (0)e, + (-1)e, + (0)eg + (-1)x; + (-1)x, + (0) x5 = -2

Re-write as [A] [x] = [B] to solve for auxiliary exponents [x;] in terms of [e] :

/1 0 O|[x|=(1-¢

101 1f[x (=] 1+3e,-e,-6; Invert [A] and write [x]=[A][B]:
11 0 x)=1\2+e

Xy 1 0 O 1-e 1-e

X|=(-1 0 -1 1+3e,-e,-e; | = |1+e;-¢

X3 2 1 1 -2+e, l+e, -6
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Here the units table of the previous slide has
been represented by a system of equations
representing all lift affectors and exponents,
with the units of lift represented by the
column vector at upper right. This system is
then converted to matrix form and the
auxiliary units matrix (middle-left) is inverted
to solve for the auxiliary exponents (x;) in
terms of the empirical exponents (e),
acknowledging that the empirical exponents
are not yet known.




Rayleigh’s “Similitude” dimensional analysis, continued 2
Application: Empirical study of wing aerodynamic lift

Recall the original assertion:

L= f(a,A,p,v.b,u,a,c)=¢, p v2 b% p" a2 ¢

X; 1l-¢e

Recall from the
. . X, = |1+e;-e,
previous slide: o
X3 l+e,-e; A
| b |

Three right-hand groups characterize
the left-hand group. We now add in
angle of attack (a), as a fourth
dimensionless right-hand “group”

Interesting, but not fully
satisfactory ; Next, draw

L pac e ez [p] & more upon the “artistic”
Tac = e, T [5] - [a] &+ aspect of the method

C
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Now combining the auxiliary exponent solution with what
would be Rayleigh’s postulate yields three right-hand groups
efficiently characterizing one left-hand group. Such groups,
preliminary at this point, can be named a “pseudo” lift
coefficient, pseudo Reynolds number, Mach number, and wing
geometric aspect ratio (span/average_chord). Applying “art
and experience,” and/or perhaps separate test data or theory,
we replace the geometric aspect ratio with its “equivalent
aspect ratio,” dividing by the cosine of the mid-chord sweep
angle.*

We will next fine-tune the correlation, but before doing so we
recall that any number raised to the Ot power becomes unity,
whereby any dimensionless group having an empirical
exponent near zero will thus have little or no effect on the lift
group. Furthermore any non-zero empirical exponent may be
negative, as with Reynolds number were we instead to
characterize aerodynamic drag.

* Barnes, J.P., Configuration Aerodynamics - Classical Methods Applied, AIAA
2020-2708




Rayleigh’s “Similitude” dimensional analysis, continued 3
Application: Empirical study of wing aerodynamic lift

“Art & science”: equivalent aspect ratio includes sweep

ac e2 b/c | &3
[p ] [ / [a] ey
pac cosA
Factor by (a/V) 5 then divide by (1/2) [pVC/u] [b/C] Aemdyﬂamics of the Airplane, E. Truckenbrodt
T P
pvc 32 [ b/c ] €3 Q¢
p vZ bc cosA
Lift Reynolds Mach  Aspect AoA

coefficient number number ratio

Angle of attack, o

e,~0.017; ,~0; e,~0; e,~0.85; e,~1 /\ A A /\ A

2738
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Our calculations thus far yielded a “pseudo” Reynolds number which we
may argue is known from previous studies to be based on airspeed (v),
and not the speed of sound (a). Here, we are at liberty to invert every
ratio (a/v) or (b/c). We are also at liberty to factor or divide both sides of
the equation by any single or group entity. Strictly speaking, such
factoring or dividing both sides by any group adds or subtracts unity to
the empirical exponent for that group. However, we can more
conveniently allow all empiricals (e;) to “float” unchanged for now, but
soon to be revealed empirically. Provided the data is taken above a
critical Reynolds number, and below a critical Mach number, where
neither is found to affect lift, we discover the two related empirical
exponents to be zero.

To isolate the empirical exponent (e;), we cross plot test data (lower
right) for lift coefficient (linear range) versus equivalent aspect ratio.
Next, we observe that the exponent on angle of attack is unity. Finally,
the empirical factor (e,) is revealed by inspection to fit the test data. We
thus emerge with a compact mathematical model of low-aspect-ratio,
swept-wing lift within stated limits. But the method also “warns” us of
possible regimes where changes in Reynolds or Mach number may affect
lift. Indeed, these appear at transonic Mach number and/or at “model
aircraft” Reynolds numbers.
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Non-dimensional characterization of gear aerodynamic windage
Spin gear of diam. (D), width (w), tooth height (h), speed (®) in air density (p), viscosity (p)

Dimensional postulate: Q=e, wé pe he DX ®* px ~six “affectors”

Dimensionless: Q/(p®w?D°) = e, [w/D]¢ [poD?/ ] [h/D]e3

o

Torque [=G_] Face width [G;] Re.No.[G,] Tooth Height [G;]
Optimized Regression -- Gear Windage Gear Windage Correlation Verification
P.H. Dawson's Test Data, All Gears
0.00
el e2
025| OB {6, /(6,7 6,%)} 1000 |.-Measured &
. Windag
050 Guess & p.eljturb (e;;e) e s
toward minimal scatter o
o®
-0.75 100
e, =0.50 i
-1.00 ! K.
y= 1.265+ 1.805x d
125 + 0.2882 x2 o 3
1.50 '
26 -24 22 20 -18 -16 -14 -12 -10 -0 10 100 1000
log Gs Correlated Windage, Watts

For significant additional detail see the author’s tech. paper AGMA 97FTM11
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Having applied Rayleigh’s method to a relatively-
simple case, we now apply it to a case exhibiting more
typical complexities. The present example
characterizes gear aerodynamic “windage” or torque
required to spin the gear in a gaseous atmosphere
such as dry air. Rayleigh’s method condenses six
affectors of windage into three non-dimensional
groups [G; G, G;] which, with their empirical
exponents (e, e, e;), characterize the non-dimensional
windage torque group [G,]. The affectors are gear
diameter, rotational speed, tooth height, tooth width,
air density, and air viscosity.

We have test data for all the dimensionless groups, but
we do not yet know the three empirical exponents
corresponding to the three right-hand groups. Our
suggested and applied approach guesses with
systematic variation the empirical exponents (e; e,)
which combined with [G, G, G,] isolate, with a certain
amount of scatter to be minimized, the effects of [G;].
Typically such exponents are less than unity, but
Reynolds number will have a negative exponent
thereof. At the lower right the final correlation exhibits
a very good match to the test data. Curiously, the
postulated empirical factor (e,) makes no obvious
appearance, apparently “buried” in the result.

10
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Conic-section orbits: Isaac Newton Chronology

Year Age Development or Event

1665 23  Trinity math degree, avoids plague
1665 23 Invents differential calculus

1666 24  Invents Integr. calculus & gravitation
1668 26  Cambridge faculty appointment
1672 30 Elected Royal Society Fellow B
1684 42  Leibnizinvents/publishes calculus | PHILOSOPHIE
1685 43  Sphere point-mass equivalent PRINGCIPIA
1686 44  Book: Principia (proofs geometric) || MATHEvATIr |
1702 60 Newton publishes his own calculus
1708 66  Knighted

1727 85 Quoted, shortly before death:

“I do not know what | may appear to the world, but to myself | seem to
have been only like a boy playing on the seashore, and diverting myself in
now and then finding a smoother pebble or a prettier shell than ordinary,
while the great ocean of truth lay all undiscovered before me.”

www.HowFliesTheAlbatross.com
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Isaac Newton entered college with little or no knowledge of
mathematics, and graduated at age 23 from Trinity as a supreme
master of the discipline. Based on his work at Trinity and at home
in Lincolnshire, where he retreated to avoid the plague, he
invented differential calculus in his first year out of college. The
next year he invented integral calculus’, and his concept for
gravitation. Secretive and socially dysfunctional®®, Newton
originally kept his calculus to himself, and in publishing his
epochal book Principia at the age of 44, employed entirely
geometric proofs. Only well after Leibniz!® independently
discovered and published calculus did Newton reveal his own
calculus, via his book Optix, at the age of 60. Nevertheless,
Newton’s mastery of geometric proofs in Principia, explaining
numerous phenomena including conic-orbital shapes, orbital
times, and earth-moon effects, remains today arguably
unparalleled!. Newton’s legacy is marred by his accusing Leibniz
of plagiarizing calculus and by his refusal to support awarding a
prize well earned by John Harrison for invention of the first clock
of sufficient accuracy to enable accurate determination of
longitude at sea.

07 Gamow, G., The Great Physicists From Galileo to Einstein, Dover, 1988

08 Jardine, L., Ingenious Pursuits, Building the Scientific Revolution, Anchor, 2000
09 Hawking, S.W., A Brief History of Time, Bantam, p. 181-182

10 Singer, C., A Short History of Science to the Nineteenth Century, Dover 1997

11 F.R. Moulton, Introduction to Celestial Mechanics, Dover, 1970, p.67,97,190

12



Conic-section orbits: From Principia to the present day

“.. if any body is acted upon by a...force
that is inversely proportional to the
square of the distance...from the center,

J (4
/ e=5SB/BK
: =SC/CL

. q 5 9 ¢TTA H a
this body will move in...one of the conics Conic section, Principia,
having a focus in the center of forces.” Book 1, Section 4, 1686

Newton, Principia, Book 1, Section 3, 1686

Symbols and Definitions
Product of central mass (M) & universal gravitational constant (G)

Y7,

r  Radius from the central body center to the satellite e

0 True anomaly (angle from closest passage) ‘k‘-if?\{ "

v Satellite velocity relative to the central body \Y “\\

vy  Flight path angle (see sketch) -

h  Angular momentum per unit satellite mass ( \

t Time from periapsis (closest passage) '

¢ Total kinetic & potential energy per unit satellite mass ‘”";é

e Eccentricity of conic section (italic Vs. natural-log base, e) 1
~

www.HowFliesTheAlbatross.com
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Newton stated in Principia that any body
acted upon solely by a force inversely
proportional to the square of the
distance from the force center would
travel along one of the conics, with the
force center residing at the conic-section
focus. At lower right we sketch a conic
orbit annotated with contemporary
nomenclature, and at lower left we list
the various orbital quantities.

13



Analytical derivation of orbital non-dimensional parameters

Phil Barnes

Original Analysis by
F.R. Moulton, 1914

Added herein:

» Velocity Vs. position
Time from Periapsis
Non-dimensional r,v,t
Kepler’s Problem Sol’n

—£2+r92 £
r

P =

Substitutions, incl.
de/dt = h/r?2 ; conic-
section definition,
and diff. egn.sol’n
yield orbital shape:

h2
r=7/ (1 + e cosB)

Mw,m=7d9tM$ Rl e s

P fe do
T u? o (1+ecos6)?
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Here we follow F. R. Moulton!! to analytically derive conic-
section orbital shape. Added to that is our own study of time
from periapsis. The process begins with the radial acceleration
formula, then applies various substitutions, recalls the
definition of a conic section, and solves a differential equation,
all yielding orbital radius versus position. Next we relate time
and position with an equation which can be numerically or
directly integrated. By inspection, the non-dimensional radius
and time emerge when the two boxed equations at left are re-
arranged for only eccentricity (e) and true anomaly (0) to
remain on the right-hand side. Further arithmetic, included in
the author’s hand-written notes at right, reveals the non-
dimensional velocity and non-dimensional orbital energy.

11 F.R. Moulton, Introduction to Celestial Mechanics,
Dover, 1970 p. 80-82, 93,67, 97, 190
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Conic-section orbits: Dimensional & non-dimensional terms

Entity Dimensional Non-dimensional

Radius r=(h%/u) /(1 +ecosf) R=ru/h?= 1/(1+ecosh)
Velocity V=\/2(TM/T') V=vh/u= +1+e?+2ecosb
Flt.angle y= cos~1 [h/(rv)] y = cos [ 1/(RV)]

Energy e = (v?/2) = (u/7) E=eh?/u? = (V2/2) - (1/R)

£ = p*(e?—1/(2h*)  E=(e*-1)/2

Ti t = (h3/u? ’ 49 T_wz_lfs -
ime t=( /M)Lm " 2mh3 " 2m ), (1+ ecos@)?

Fore < 1, theintegral of the left side is (see Peirce, Short Table of Integrals,

*00 om0 df a1 [ —esin 0 10
o [(semndl = B = ST | S ) — 'Y< \
Jo (1 + ecos H)* 1 —e*\l + ecos 1 + ecosll Y~
- e 2N
7 —e ] 2 Vi=2¢ \ -
= [?(Q:ﬂ_\ Ao tan™! [ < tan 140 For e=1 \S A
1— (‘-"L 1 +ecosll /] — ¢t 1+e / : ’ 3 A
Fore > 1. T = 3tan(38)+tan”(%0) r' | N ‘g
- [/ di e [ esind 12m (*,:k\ \ \‘7
Jo (1 + e cos 0)* T — I;H + e cos ) y\),‘"
_ 1 In Ve+ 1+Ve=1ltan —‘:”) I W.T. Thomson, Introduction to ¥
Ve —1 \We+ 1 —+e—1tan il | Space Dynamics, Dover, 1986, p. 73 A

15
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Together with Augenstein!?, Bate et.al.!3, and others we are
motivated for various reasons to non-dimensionalize the orbital
parameters. Our own formulation herein is unique in its simplicity
and combined compact graphical characterization of elliptical and
hyperbolic orbits together. Other motivations include dovetailing
with the patched-conic method, expedited solution of Kepler’s
problem, and avoidance of mixed-unit scenarios (recall the Mars
Lander failure).

At upper left we show the original dimensional quantities (r, v, g,
t). At upper are their non-dimensional counterparts (R, V, E, T), in
terms of the eccentricity (e) and true anomaly (0). As might be
expected for a circular orbit (e=0) the non-dimensional radius (R),
non-dimensional velocity (V), and non-dimensional period (T) are
all unity.

To define non-dimensional time (T) from periapsis we can
arbitrarily divide by (2w), making the circular orbital period unity.
Our original paper (appended herein) had numerically integrated
(T), but after its publication we learned that such can be directly
integrated®. In the slide above, the time-related formulas are
shown at lower left for elliptical and hyperbolic orbits, and at lower
right for a parabolic orbit.

12 Augenstein, B.W., Dynamics Problems With Satellite Orbit Control,
Trans. ASME, Nov. 1959

13 Bate, Mueller, White, Fundamentals of Astrodynamics, Dover, 1971, p.
41

14 Thomson, W.T., Introduction to Space Dynamics, Dover, 1986, p. 73
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Conic-section orbits: Shape, velocity, and time Vs. position

8.0 ——— i = ) =
G e Non-dim. velocity Z= 1
| Conic AN elliptical orbits
section ._5: N
| orbital vh/p — o _ :
2.0 shapeS e i‘** ; \ :
(1+E)RSING i
'J.-'J: |
o |
. ol
2.0 |
3
g1-53
4.0 RSO |
(1+e) RCos @ 0.0 L
o k) &
4.5 r o
4.0 | Non-dim. velocity Non-dim. time £/ ; !
I -~ | hyperbolic orbits 0 | @NY.conic orbit & $ha/ i
vh/ g i
n 3 //\ &
S NN
o SO\
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Here we show the non-dimensional shape,
velocity, and time from periapsis for conic-section
orbits. Again for the circular orbit, the non-
dimensional radius, velocity, and period are all
unity.

At lower right the non-dimensional time is
presented as the independent parameter, although
it has been calculated dependent on the
eccentricity and true anomaly. This
characterization, with either time or position taken
as the independent variable, expedites conic
orbital analysis, including the iterative solution of
Kepler’s Problem, to find the change in position,
given the change in time.

16



Conic-section orbits: Lunar free-return trajectory

Earth-moon patched-conic abproximation
High-e earth orbit to lunar-influence sphere

: rd :
Hyperbolic trajectory relative to the moon
Flyby at perilune in lieu of orbital insertion

Computer code variable names include what relative
to what, at what point, and with what units, if any.

N
Carry both dims. & non-dims.
Avoid “Mars Lander”scenario

esm = 1.69 /

16.9-r, 2:3 {5 vine2 kms

vsm2_kms [\

perilune A1\~
altitude X

“Fai

www.How

— 3? N\ vse2_kms —
m Taz

vsel kms=10.9
Vsel =1.97

lure is not an option”
-Gene Kranz, Apollo 13 Flight Director

FliesTheAlbatross.com =

Here we apply Newton’s conic-section orbits in the form
of a lunar free-return trajectory®> which, in taking the
shape of a distorted but symmetrical figure-8, gives the
astronauts a good chance of a safe return home in the
event that the lunar-orbit-insertion (LOI) burn at
perilune fails to happen. But the return trajectory does

not by itself guarantee a safe return because of

numerous other risks, for example the narrow window
of an acceptable earth-atmospheric re-entry angle. The
author’s technical paper, embedded on slide 18 (AAS
kept no record of it) applies the earth-moon orbit non-
dimensional orbital parameters to analyze the trajectory.
In this last chart we’ll focus on handling also the
dimensional terms in our computer code.

In the diagram above, with the orbital shape shown to
scale, the spacecraft undergoes trans-lunar injection
(TLI) at point-1 with a 6.5-min burn starting from a 300-
km parking orbit. The spacecraft then coasts 2.58 days in
a high-eccentricity (ese=0.972) earth orbit to reach the
lunar sphere of influence (SOI) at point-2, where the
spacecraft at moon-relative velocity (vsm2_kms) begins

a hyperbolic passage of moon-relative eccentricity

(esm=1.69). The spacecraft then travels 16.9-hr from SOI
entry to perilune at point-3 where an optional multi-
minute burn decelerates the spacecraft for lunar-orbit
insertion (LOI).

If such burn does not happen, the spacecraft enters a free
return to earth at point-4 whereby the spacecraft will have
undergone a gravitational flyby at the special conditions
which do not alter the earth-relative orbital energy of the
spacecraft.

The analysis above applies the patched-conic approximation
which has numerous opportunities for error accumulation.
For example, the earth and moon together rotate about a
common center of gravity which resides inside the earth at
about % of the earth’s radius. In practice, the mission
incorporates course corrections, typically including one at the
point of entry into the lunar SOI. Without such correction,
perilune altitude may differ from that desired.

An Apollo astronaut, orbiting the moon alone, was alarmed
to perceive his spacecraft altitude at perilune to be below the
highest peaks in the lunar terrain. He quickly advanced the
throttle, but had not yet secured himself in a seat, whereby
he found himself thrown to the back of the spacecraft as it
accelerated?®®. Fortunately, he regained control. Spaceflight is
often unforgiving, and beginning with orbital analysis, failure
is not an option, to quote Apollo 13 Flight Director Gene
Kranz.

15 Kaplan, M.H., Modern Spacecraft Dynamics..., Wiley, 1976, p. 107
16 Worden, A., Falling to Earth, Smithsonian, p. 184-185
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AAS 87-537

RELATING CONIC—SECTION ORBITAL POSITION, VELOCITY,
AND TIME FROM PERIAPSIS AS DIMENSIONLESS QUANTITIES

J. Phil Barnes
Northrop Aircraft Division

=

Firefox PDF

§ Document

“accurate and origina
- Dr. Vladimir Chobotov

AAS5/AIAA Astrodynamics
Specialist Conference

KALISPELL, MONTANA AUGUST 10 - 13, 1987
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recently retired as a 40-year veteran of air vehicle and
subsystems performance analysis at Northrop Grumman,
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RELATING CONIC-SECTION ORBITAL POSITION, VELOCITY,
AND TIME FROM PERIAPSIS AS DIMENSIONLESS QUANTITIES

*
J. Phil Barnes

Keplerian orbital characteristics are presented
in compact mathematical and graphical form by
non-dimensionalizing orbital radius, velocity,
energy, and time from periapsis. The auxiliary
anomalies are used to obtain the dimensionless
time. The accuracies of the eccentric and hyper-
bolic anomalies are confirmed, particularly at
near-parabolic eccentricity, by numerical solu-
tion of Kepler's problem. Finally, the dimen-
sionless groups are applied toward analysis of
a lunar free-return trajectory via the patched-
conic method with the aid of Cartesian vector
operations. '

INTRODUCTION

A Keplerian orbit (Figure 1) has the shape of a conic sec-
tion. The orbit is defined by its eccentricity (e), angular
momentum (h) per unit satellite mass, and central body gra-
vitational parameter (M). The orbital radius (r), velocity
(v), and time (t) from periapsis can be multiplied by
various powers of (i) and (h) to form dimensionless groups
which, along with flight-path angle (Y), depend only on the
eccentricity and true anomaly (8). The orbital energy (&)
per unit satellite mass can also be non-dimensionalized.

Figure 1
Keplerian Orbital Parameters
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The dimensionless groups, derived in Appendix 1, are summa-
rised as follows, using upper-case letters (R,V,E, and T) to
designate non-dimensionality:

%
Senior Engineer, Northrop Aircraft Division
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Introduction, continued

Radius Group R = r,u/h2 = 1/(1+ ecos9)

Velocity Group V=vh/u = \/1+e2+2ecose
Flight-Path Angle 7 = cos *(1/RV)

Energy Group E = Shz/u2 = %(Vz)—(l/R) = %(ez—l)

Y

Time Group T 5
0(1l+ ecos®)

tn2/21r h3 = (1/2#)‘

Since the time-group integral cannot be evaluated by ordi-
nary means (unless e=1), the eccentric anomaly (€) and hyper-
bolic anomaly (F) were devised (Ref.l) as auxiliary anoma-
lies which can be integrated. For eccentric, parabolic, and
hyperbolic orbits, the time group is respectively as follows:

* After this paper was written, it was
found that the time group can be
integrated, as in Thomson's book, 2.3/2
"Introduction to Space Mechanics," 2T (1-e7)
Dover, 1986, page 73.

For e<l, T = €-esiné€

—
il

For e=1, 3tan(%e)+tan3(%6)

12w

For e>1, T

e sinh(F) - F
3/2

27 (e2-1)

With the auxiliary anomalies (¢, %6, or F) the solution of
Kepler's problem (to determine §, given T) is iterative.
Also, when the eccentricity is near unity the iterative solu-
tions are slow to converge and may be subject to error when
(T) is evaluated in single precision. As an alternate, non-
iterative solution to Kepler's problem, the dimensionless
time derivative (d8/dT) can be integrated numerically:

46/dT = 27 (1+ e cos 8) GzEz(dB/dT)Aﬂ?
The numerical integration can be used to test the acecuracy
of (T) as determined by the auxiliary anomalies. Also,
numerical integration can be used as an alternative to the
iterative methods when they are slow or unable to converge.

Regardless of how the time group (T) is obtained, the dimen-
sionless groups (R,V,E, and T) offer compact presentation of
orbital characteristics, as well as efficient analysis of
conic and patched-conic orbits,

(2)
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PRESENTATION OF ORBITAL CHARACTERISTICS

The orbital shapes can be compared by plotting dimensionless
Cartesian coordinates, X=Rcosf@ and Y=Rsin§, as shown in
Figure 2. As might be expected, the circular orbit has a
radius group of unity. At the semilatus nodes, all conic
orbits have a radius group of unity. By scaling up the X-Y
coordinates by the factor (l+e), the orbits can be compared
with common periapsis as shown in Figure 3. '

The velocity group, as well, is unity in a circular orbit
(Figure 4)., In eccentric orbits, the velocity group is (l+e)
at periapsis and (l-e) at apoapsis. The direction of the
velocity vector is given by the flight-path angle (7), which
varies with (e,0) as shown in Figure 5. In hyperbolic orbits
(Figure 6) the velocity group is again (l+e) at periapsis.
The flight-path angle is linear with true anomaly for a
parabolic orbit (Figure 7).

For eccentric, parabolic, and hyperbolic orbits the dimen-
sionless time from periapsis (time group, T) is presented

in Figure 8., Note that the dimensionless period of the
circular orbit is unity. The time group arbitrarily contains
(27) in its definition, allowing convenient calcellation of
the (27) when converting radians to degrees in numerical or
iterative solutions to Kepler's problem.

For eccentric orbits, the period (7) and period group (P)
are related as follows:

2,3/2

P =Tu?/27h = 1/(1-e?)
Figure 9 relates the trueianomaly to the time from periapsis
as a fraction (t/7) of the period.

In hyperbolic orbits (Figure 10) the time group is negative
approaching periapsis. Figures 8 or 10 can be used for
approximate graphical solution of Xepler's problem. Given
an initial true anomaly (#1) alcong with the eccentricity,
the initial time group (Ty) can be obtained graphically.
Then, given (h) and (u), the time interval (tg-tq1) is non-
dimensionalized to form (T2-Tq). Then, given the final time
group (T2), the final true anomaly (69) is obtained graphi-
cally, :

Figures 8 or 10 also offer a close first guess for the final
true anomaly in the iterative solution to Kepler's problenm,
as illustrated in Appendix 2. Since the iterative solutieon
uses (e), (T), and the auxiliary anomaly to determine (8),
the velocity group (V=vh/p) is ideally suited for determi-
ning the dimensional velocity (v):

v = (u/h)\/1+e2+2ecose
(3)
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Figure &

VELOCITY GROUP
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VELOCITY GROUP IN HYPERBOLIC ORBITS
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Figure 8
DIMENSIONLESS TIME FROM PERIRPSIS IN KEPLERIAN ORBITS
360 — .
300
210
60
180
120
60
D , -
c.0 02 6.4 DB 0.8 1.0 1.2 t.4 1.6 1.8 2.0
tuZ/amhd
Figure 9
TIME FROM PERIAPSIS AS A FRACTION OF PERICD
360 -
300 ............................................ ’éo't‘ :';'
240 j
60
180
120
60
o b
0.0 0! 0.2 03 0.4 05 06 0.7 0.8 0.9 1.0
/7
(7




AAS 87-537

Figure 10

DIMENSIONLESS TIME FROM PERIAPSIS IN HYPERBOLIC ORBITS
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NUMERICAL SOLUTION OF KEPLER'S PROBLEM

The d1mens1onless time (T) from perlap51s to any true anomaly
(@) is given by: 46
T=tp /21rh (1/21:‘)

(1+ ecose)

The integral can be evaluated numerically, with Simpson's
Rule for example, to determine (T), given (e) and (8). The
result can be used to check the accuracy of (T) as deter-
mined by the auxiliary anomalies. Alternatively, the equation
above can be differentiated and rearranged to yield the
dimensionless time derivative:

d6/dT = 2 m(1+ ecose)2

This derivative can be used to numerically solve Kepler's
problem with a constant or variable time group increment (AT).
In Table 1, the Runge-Kutta method (Appendix 3) was used with
variable (AT) ad justed to advance roughly 1°~(8;,1-6;) in

true anomaly at each step:

AT = Ty -T; = 1° (27/360°) /[2m(1+ e cos,)?]

The actual advance (0it+1-64) was calculated in double preci-
sion with the Runge-Kutta method. Then, given (0), the auxi-
liary anomaly was used to calculate (T) in double precision,
thereby obtaining a comparison of the methods at each step.

(8)
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Table 1
Time Group Comparison
Double Precision

9° T =tpuZ/amhd
TRUE NUMERICAL &  AUXILIARY
e ANOMALY | INTEGRATION  ANOMALY
0.6 44.8852 | .0527286 0527286
0.6 89.5376 | .1377633 .1377632
0.6 178.619 | .9525895 .9525893
0.6 181.619 | 1.004654 1.004654
0.99  44.8450 | .0350285 .0350284
0.99  89.3285 | .1048998 .1048998
0.99  136.083 | .5895153 .5895152
0.99  169.745 | 21.21108 21.21114
0.99  180.815 | 200.6112 200.6123
0.999 44.8443 | ,0347316 .0347316
0.999 .137.975 | .6735287 .6735285
0.999 170.263 | 40.55587 40.55624
0.999 176.669 | 615.5090 615.7290
0.999 178.914 | 2885.342 2888.557
0.999 180.767 | 7605.110 7608.113
1.0 59.7174 | .0507011 .0507011
1.0 123.518 | .319335% .3193350
1.0 165.897 | 14.65918 14.65920
1.0 174.244 | 210.3356 210.3592
1.001 59.7172 | .0506562 .0506562
1.001 123.516 «3195205 «3195204
1.001 165.870 | 15.13996 15.13998
1.001 170.160 | 46.13354 46.13406
2.0 59.6042 | .0244402 .0244402
2.0 93.7751 .0778429 .0778429
2.0 116.732. | .8392446 .8392227
X VARIABLE TIME GROUP INCREMENT AT=1°/(d8/dT)

The results of the numerical integration are seen to agree
with those of the auxiliary anomaly generally to five or more
significant digits, except at the far side of a highly-eccen-
tric orbit (e=~0.999, #~180°) where the methods differ at the
fourth significant digit. All computations in Table 1 are
non-iterative. The computations using the auxiliary anomaly
were non-iterative because (8) was specified. If, however,
(T) were specified and (@) were to be iteratively determined,
convergence on () may not be reliable when using the auxil-
iary anomaly at near-parabolic eccentricity. In this case,
numerical integration offers a reliable, non-iterative solu-
tion for (@) accurate to a small fraction of 1°.

When computations are limited to single precision, the numeri-
cal integration is frequently more accurate than the auxiliary
anomaly at near-parabolic eccentricity. Table 2 presents an
accuracy comparison, using the auxiliary anomaly in double
precision as the standard of accuracy, and dots to indicate
the more accurate values of (T).

(9)
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TABLE 2
TINE GROUP ACCURACY COMPARISON
SINGLE PRECISION

6° , T =tu¥amwhd
TRUE NUMERICAL ¥ AUXILIARY EXACT 3%
e ANOMALY | INTEGRATION ANONALY

0.99  9.9926 0.007044 0.007044 0.007044
0.99  59.718 0.051152 o 0.053148 0.051152
0.99  120.62 | 0.281475 s 0.281471 0.281469
0.89  175.12 67.19261 e 67.19213 67.19140
0.99  179.80 172.7628 . 172.7603 172.7578
0.999  9.9926 0.006981 o 0.006978 0.006981
0.999 59.717 0.050745 o 0.050748 0.050745
0.999 119.63 0.271576 o 0.271621 0.271571
0.999  170.26 40.52766 o 40.53115 40.52691
0.999 178.15 1678.677 e 1680.191 1680.005
0.999  180.76 7596.878 e 7598.53% 7599.068
1.0 29.931 0.021778 0.021778 0.021778
1.0 90.305 0.106958 e 0.106957 0.106957
1.0 150.31 1.725030 o 1.724981 1.724975
1.0 175.71 509.8093 e 509.9658 509.9817
1.04  4.9982 0.003440 o 0.003383 0.003440
1.01 - 29.931 0.021567 0.021675 0.021567
1.01  90.300 0.106311 o 0.10631 4 0.106310
1.01 150.24 1.840474 o 1.840397 1.840426
1.01  170.84 289.2851 » 289.7937 289.7665
1.001 9.9926 | 0.006967 0.006961 0.006967
1.001 29.931 | 0.021757 e 0.022442 0.021757
1.001  60.707 0.051882 0.052735 0.051882
1.001  90.305 0.106893 o 0.107820 0.108892
1.001  120.60 0.282638 0.283232 0.282631
1.001  150.30 1.735943 1.736358 1.735899
1.001  170.15 46.09414 o 46.09236 46.09021
1.001  175.49 693.5461 » 694.2402 693.9728

X VARIABLE TIME GROUP INCREMENT
X AUXILIARY ANOMALY IN DOUBLE PRECISION

ORBIT ANALYSIS WITH THE DIMENSIONLESS GROUPS

To illustrate the application of the dimensionless groups, a
lunar free-return trajectory (Figure 11) will be analyzed
with the patched-conic method (Ref. 2). The free-return tra-
jectory is useful in the event that the decelerating impulse
is not available at perilune, because lunar gravity will then
swing the spacecraft into a trajectory returning to the same
perigee altitude as the outbound trip.

The patched-conic method can be used for approximate analysis
of the free-return trajectory. With this method, the trajec-
tory is analyzed by patching together the various 2-body
(conic) orbits, neglecting the effects of third bodies. In
the lunar free return trajectory, only the earth's gravity
G@ 398601 km3/s2) is considered until the spacecraft enters
the lunar sphere of influence at a distance (rip=66300 km)
from the moon. Within the lunar influence sphere (Um=4903
km /s ), the effects of the earth on the moon-relative tra-
jectory are neglected. Furthermore, the effects of the sun
are neglected in both patched orbits.

(10)
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Figure 11
Lunar Free-Return Trajectory
lunar influence sphere\_.-' """""""""
Brgr 86300 lp
km ~:'im
moon —relative /
trajecteory 2
(.
rroo{
>
fim2
’”72
—
— v GI’H]
4 T
\ —— rq—rs]
\ 6678 km
NS

The spacecraft is injected at point (1) from a geocentric
parking orbit of 300 km altitude into a highly-eccentric
transfer crossing in front of the moon's path. At point (2)
the spacecraft enters the lunar influence sphere, beginning
its moon-relative hyperbolic encounter. The spacecraft reaches
perilune &t point (3) and then leaves the lunar influence
sphere at point (4). The objectives are to determine the in-
jection speed (vgi), phase angle (fp1), time (ti3) to peri-
lune, and perilune altitude, all such that the earth-relative
eccentricity and energy of the return trip match those of the
outbound trip.

The analysis begins as recommended in Ref. 1, where both (vsl)
and the intercept angle (f) are estimated. These estimates are
later revised if the desired trajectory is not observed. From
(vg1) and (rgy1) the earth-relative angular momentum (hjyg) is
determined. Then the velocity group (Vg;) and eccentricity
(elz) are determined. From (8, rypo, and rj,o) the law of
cosines is applied to determine the radius (rgg). Then the
radius group (Rgp) and true anomaly (fg2) are calculated:

hyy =1 v (at periapsis)
Vs1 = Vo1 Pip /He
€19 = Vsl =1 (at periapsis)

2
Ryo = Taa Me/ By,

(11)
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Bg2 = COS—l[(l/elz)(l/Rsz—l)]

Next, the velocity group (Vgo), velocity (vgp), flight-path
angle (Yg2), and velocity vector components are calculated
(Refer to Figure 1la):

9 Figure 1lla
Vg2 =\/1l+e197+2 elzcosesz Velocity
v n y Components
v = &,
52 s2Mg/ 12 v
-1 V,J/’\
'Ysz = CO08 (1/R52V52) K : \‘
Y \' /\”’Vr
- . = ; )
Vs20 = Vgg €0SY¥555 Vs2r T Va2 31anz fe
. X
Vsax = Vsar €086y - Vs26 Sines2
Vs2y = Vsor Sin®gp + vgoyg cOsEy,

To determine the lunar velocity vector (sz) the law of
sines is used to determine the angle (&), which is then
subtracted_from (fg32) to obtain (fy9). Then the x-y compo-
nents of (vpo) can be determined. The lunar velocity vector
is subtracted from the spacecraft velocity vector to obtain
the relative velocity vector (Vszm) with which the spacecraft
begins its hyperbolic passage., The lunar influence radius,
as a vector g?imz), is calculated by subtracting the vector
(;32) from (rpo) using x-y components (r cos@) and (r sing).
Finally, the moon-relative angular momentum is found by the
vector cross product:

vectorsy th =T, o5 X Veom

scalar: h,, = “im2x 's2my ~ Tim2y Vs2mx

The scalar angular momentum (hps) will be negative, provided
the spacecraft passes in front of the moon. Taking note of

the sign of (h24) for use in subsequent vector rotation opera-
tions, its absolute value is used for all remaining calcula-
tions. The moon-relative radius group, velocity group, energy
group, and eccentricity are as follows: : ' '

2
RsZm = rithJh24

VsZm = Vsom h24/#n1

2
Eyy = 3V 50" = (1/R ,0)

m

€9y = 2E24+1

The spacecraft enters the lunar influence sphere with an ini-
tial true ancmaly:

Os2m =-cos_1[(1/e24)(1/R52m—1)]

(12)
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The moon-relative true anomaly (Oshm) at exit from the lunar
influence sphere is positive, with magnitude (659,). Thus, the
moon-to-spacecraft radius vector sweeps out an angle (26g4p)
during hyperbolic passage. This rotation is clockwise, provi-
ded the scalar angular momentum (hj4) was originally of nega-
tive sign. The moon-spacecraft radius vector (Trip4) can thus
be determined by rotating the vector (rjp2) clockwise by the

angle (20g4p) -

Figure 12 shows how the new x-y components are determined for
a vector which is originally oriented at an angle (Y¥) and then
rotated clockwise through an angle (§). When computing (¥),
its quadrant must be taken into account.

Figure 12
Y VECTOR ROTATION

P= AN (Vy/Yy

vg=vcos{v-5)

v zvsin {y-8)

Also during hyperbolic passage, the relative velocity vector
is rotated. Again.provided the scalar angular momentum (hpy)
was originally of negative sign, the rotation is clockwise.
The relative velocity vector at approach (vgop) is thus rota-
ted clockwise to form the relative velocity vector at depar-
ture (v 4tp) from the lunar influence sphere. If a spacecraft
approacﬁes a central body from a distance of infinity, its
relative velocity vector is deflected by an angle

§ = 2 sin—l(l/e)
00 *

In a patched-conic condition, however, the radius at approach
is finite. Since the central body is "turned off" whenever the
spacecraft is outside the influence sphere, the velocity
turning angle will be somewhat smaller than (8.). Figure 13
relates the turning angle (§) to the eccentricity and initial
true anomaly, where the turning is limited to that which
occurs within the sphere of influence. In the case of the
lunar free-return trajectory, the spacecraft enters the lunar
influence sphere with (6=-119,8°) and (e=1.687) as indicated
by the -dot on the figure. The corresponding turning angle is
72.18°, counter-clockwise in Figure 13, but clockwise in
Figure 11 due to the orientation of the hyperbola.

The moon translates during hyperbolic passage. However, the
axis of the hyperbola remains fixed in orientation. The time

(13)
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Figure 13

VELOCITY TURNING ANGLE WITHIN THE SPHERE OF INFLUENCE
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group from perilune at point (3) to point (4) can be doubled
to obtain the total dimensionless time in the lunar influence
sphere. Then the time is dimensionalized, allowing calculation
of the change in the moon's position during hyperbolic pas-
sage. The hyperbolic anomaly (F,) corresponds to the moon-
relative true anomaly (6g4p) and eccentricity (egy).

cosh Fy =(eqy + cosBg4p)/(l+ecosbgysp)
sinh FA = Jcosh2F4 -1

F4 = 1ln(cosh Fy+sinh Fy) |

T, =(eqq sinh Fy - Fj) / [2m(ey,2-1)3/?]
ty, = (2T4)27hy,% /2

64 = Op2 t t24(de/dt)m

Given the moon's true anomaly (6,4) at the point 'where the

spacecraft leaves the lunar influence sphere, the lunar velo-

city vector in x-y components can be determined and added to

the spacecraft relative -velocity vector (Vé4m)'to obtain the

earth-relative spacecraft velocity vector:
v =V + Vv

s4 s4m mé4 (14)
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Then the earth-relative spacecraft radius (Tg4) is obtained
by adding the earth-moon radius vector (Tp4) to the moon-
spacecraft vector (Fjp4). Thus the earth-relative angular
momentum for the return trajectory is determined by the
vector cross product:

E4 = ;s4 X V34

The angular momentum is converted to scalar form (hg) and the
earth-relative velocity group, radius group, energy group,
and eccentricity for the return trip are calculated:

Vsi = V4 hév/M¢

2
s4 = Tgs Me/by

1 2
4L = -2-(VSZI- ) - (1/RS4)

e, =\/2E4 + 1

Finally, the moon's true anomaly at injection (6 1) is deter-
mined by calculating, and then dimensionalizing, the time group
from point (1) to point (2). The resulting time (tj2) is
added to the time (t93) to determine the outbound time to
perilune. At perilune, the altitude is obtained by dimen-
sionalizing the moon-relative radius group: ‘

=
|

Roqy = 1/(1+e24) at perilune

2
= RsSm h24 Aum

- 1738 km

T
s3m

Perilune altitude

T
s3m

Figure 14 presents the results of the analysis for the proper
injection conditions (vg1=10.848 km/s, 01=129.61°). As might
have been expected, the return trajectory is a mirror image

of the outbound trajectory with respect to a line passing
through the earth and the point of perilune. When the space-
craft is inside the lunar influence sphere, its earth-relative
trajectory completes one end of a distorted "figure-8" shape.
Since the axis (A) of the lunar passage hyperbola remains
parallel to the line of symmetry, the axis passes through the
earth at the point of perilume. Thus, the hyperbolic encounter
with the moon does not change the energy of the spacecraft
relative to the earth.

The major axis of the outbound elliptical transfer resides on

the x-axis. That of the return ellipse (axis B) is inclined to
the x-axis. Since the point of injection resides on the x-axis
and that of return perigee resides on axis (B), the round trip
falls just short of closing the "figure-8" shape.

(15)
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Figure 14
Injection Conditions and Symmetry
. 0of Lunar Free-Return Trajectory

e . y

CONCLUSIONS

1.

The dimensionless orbital parameters (R,V,E, and T) offer
compact mathematical and graphical presentation of Keple-
rian orbital characteristics, as well as efficient analy-
sis of conic and patched-conic orbits. '

Numerical solution of Kepler's problem confirms the accu-
racy of the flight time predicted by the auxiliary anoma-
lies, even at near-parabolic eccentricities.

When iterative methods, including those using the auxi-
liary anomalies, are unable to converge on a solution to
Kepler's problem, numerical integration offers a reliable,
non-iterative solution,

Patched-conic orbits can be conveniently analyzed with the

aid of Cartesian vector operations on the dimensional
orbital parameters (r) and (v). :

(16)
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APPENDIX 1 AAS 87-537

DERIVATION OF CONIC-SECTION DIMENSIONLESS PARAMETERS

Conic-Section Orbit Parameters

Product of the central-body mass (M) and universal gravitational
constant (G) '

Radius from the mass center of the cental body to that of the
satellite ' '

True anomaly, or angle from closest passage (periapsis)

Magnitude of the velocity

.Direction (flight-path angle) of the velocity

Angular momentum (per unit satellite mass) about the central body
Time from periapsis to the true anomaly, ©

Orbital energy per unit satellite mass

Conic-Section Orbital Equations (Ref. 1, p.16-29, p.1l87)

1)

2)

3)

&)

5)

6)

Radius r = (h2/u)/(1+ecosd)

Velocity v =\ 2(€ +¥/x)

-1
Flight-path angle Y = cos (h/rv)

Angular momentum h = rv cos Y

Energy £ = uz(ez-l)/Zh2 = v2/2 - u/r
3 9 0 de
Time from periapsis t = (h"/u") )
0 (l+ecosB)

(18)
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Appendix 1, continued
The Dimensionless Parameters

Equations (1-6) are now manipulated to yield the dimensionless
quantities of equations (7-12), using upper-case symbols to
designate non-dimensionality:

7) Dimensionless Radius, R ru/h2 = 1/(l+ecosh)

8) Dimensionless Velocity, V vh/u = \/l+e2+2ecose
using (1,2, and 5) .

9) Flight-Path Angle, cosY = (h/rv) = 1/RV
10) Dimensionless Angular RVcos7= 1
Momentum, H
. . 2, 2 2. 2
11) Dimensionless Energy, E Eh’/u” = V/2 - 1/R = (e -1)/2
using (5) or (7,8)
s 3 0 de
12) Dimensionless Time, T tp/2Th = (1/2m) 5
from Periapsis 0 (l+ecosH)
13) Differentiate (12): d0/dT = 2T (l+ecos®) 2

Relate (T) to the auxiliary anomalies:

e + cosB
_ % © €- esin¢€ cos€ =
14) For e < 1, T= — 1l + ecos@
—
om (1-e2)3/2
sine\/ 1-e2
3 sin € = —m™M™M88 —
% tan(0/2) tan” (6/2) 1 + ecos®
15) For e =1, T = +
LT 127

coshF = cos €

w5 e sinh F - F 5
16) For e > 1, T = —_— sinhF = \/cosh F -1

3/2

27 (ez-l) F=1n (coshF + sinhF)

* .
For 6 > M, add to T the dimensionless period, 1/(1-e2)3/2

* ‘
For e=1 or e>1l, and ©® negative, use positive 6 and
take the time as negative

(19)
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APPENDIX 2
Application of the Dimensionless Groups Toward
The Iterative Solution of Kepler's Problem

Consider a satellite with velocity (v )=4 km/s at a flight-
path angle (7,)=-60° and radius (r.)=50,000 km from a central
body with gravitational parameter ?#) 400 000 km3/s2. Deter-—
mine the position and veloc1ty one hour later (subscrlpt ).

1) h = r0v0c0376 = 100,000 km /s
2) V= v h/p =1
3) R = rou/h = 2
2

- 4 — -
4) B = 3V 2)-(1/R) =
5) e = V2E+1 = 1
6) 60= 1[(l/e)(l/Ro -1)] = -120° (approaching periapsis)
7) T0= -0.275665 from Appendix 1, Eq.(1l5)

3

8) T -T_ = (-t ut/2mh> = 0.091674

1

9) To solve for the final true anomaly (81) a first guess may
' be taken from Figure 10. The guess is designated 61

91' = -110° based on T,= -0.275665 + 0.091674 = -0.183991
10) The correspohding time group, Tl' - -0.190914 from Eq.(15)
11) The desired value of Tl is T3 = -0.183991

Thus, the estimate 91 must be revised. The new guess 1is
calculated from the local derivative (d6/dT) at 91':

o' = o' + (de/dT)(T ~T4")

where d6/dT

_27(1+ecosel‘) (360°/2m) = 155.857°
-110° +155.857°[~-.183991-(-.190914)]

4
€,

-108.921°

12) Repeat steps (10) -and (11) for the following:

T,' = -0.184173  de/dT = 164.383° ;' = -108.891°
T,' = -0.183991 v~ Thus, .6, = -108.891°
13) Finally, V1=V§;e2+2ecosﬁl = 1.16295 v1=V1p/h = 4,6518 km/s

R1=1/(1+ecosel) = 1,47879 ry= thz/u = 36970 km

-1 : o o
Y, = cos‘ (I/RIVI) g'f54‘445 (20)
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APPENDIX 3
Application of Runge-Kutta
Numerical Integration to the
Solution of Kepler's Problem

Given the eccentricity (e), angular momentum (h), and initial
true anomaly (8,) in a conic orbit, the change in orbital
position during a time interval (tj-t,) can be determined by
numerical integration of the dimensionless derivative:

d6/dT = 27(l+ecos6)?

Working with degrees, rather than radians, this becomes:
d6/dT = 27(l+ecos0)2(360°/27) = 360°(l+ecoss)?

The time interval is non-dimensionalized as follows:
: _ 2 3
Tl'To = (tl—to) m</2wh

Ordinarily, the time datum is zero at periapsis. However, the
datum may arbitrarily be set to zero at the initial true ano-
maly. Then the numerical integration over (T) is terminated
when (T) reaches (Tl-To). The time group interval (T —TO) may
be broken into constant or variable increments of (A%). For a
given integration step, the gain (A6) in true anomaly is cal-
culated with the Runge-Kutta method as follows:

*
ABS = (46/dT)SAT = 360°(l+ecose,)? AT
—- 1
Gb = Sa + era
268, = (48/dT), AT = 360°(l+ecoss,)? AT
- 1
6c = 8, T 248
A8, = (48/dT)_ AT = 360°(l+ecos6 )’ AT
Gd = ea +A6C
aBy = (46/dT), AT = 360°(l+ecos6,)” AT

Finally, A8 (1/6) (a6, + 240, + 248 + A8,)

At the very first step, 65 = 6o and on the next step,
€a = 6o +A6. At the end of the very last step, 05 +A8 = 81

*
Computer evaluation of the cosine requires that (8) be

in radians.

(21)





