
1

Animated charts ~ F5 key
Also View ~ Notes Page

Non‐dimensional Parameter Synthesis 
‐ Examples from Aero and Astrodynamics
19th Annual AIAA Orange County Aerospace Systems and Technology Conference

J. Philip Barnes
Senior Tech. Fellow
Pelican Aero Group

20 May 2023 

www.HowFliesTheAlbatross.com   

Non‐dimensional parameters provide insightful and
compact characterization of myriad physical
phenomena. Over a century after its publication,
Lord Rayleigh’s “similitude” method of dimensional
analysis remains powerful and relevant, perhaps
with applications to the emerging science of artificial
intelligence. And three centuries after the
publication of Principia, Isaac Newton’s gravitation
and conic‐section orbits continue big roles in our
lives.

This presentation reviews and renews the synthesis
and application of non‐dimensional parameters,
including for illustration empirical or theoretical
characterization of wing aerodynamic lift, gear
aerodynamic windage, and conic‐section or
Keplerian orbits. Throughout the presentation we’ll
describe the interesting physics of the chosen
phenomena as we borrow from, and build upon, the
work of Rayleigh and Newton.
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The presentation describes two methods
to derive and/or apply non‐dimensional
parameters to efficiently and insightfully
characterize physical phenomena. These
methods can be named empirical or
analytical. We’ll first review and renew
Rayleigh’s similitude method of finding
empirical exponents. We’ll then coast, in
more ways than one, as we review and
renew Newton’s conic‐section orbits,
applying the patched‐conic
approximation to study the Apollo lunar
free‐return trajectory.
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Introduction to Non‐dimensional Characterization

• Compact characterization of physical phenomena
– Prevent exponential growth of the test matrix

• Avoid “Mars Lander” mixed and/or ambiguous units 

• Two or more variables form a non‐dimensional group

• Simple example: circle circumference & diam.,  ≡ C/D
• Well‐known example: Reynolds number ≡ vc/

– fluid density (), velocity (v), length (c), & viscosity ()
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1 Barnes, J.P.,   AIAA 2016‐4711,  Principles of High‐efficiency Electric Flight, 2016 

2 Barnes, J.P.,   AAS 87‐537,   Relating Conic‐section Orbital Position, Velocity and Time From Periapsis as Dimensionless Quantities,  1987 

3 Barnes, J.P.,   AGMA 97FTM11,  Non‐dimensional Characterization of Gear Geometry, Mesh Loss, and Windage, 1997

4 Barnes, J.P.,   SAE 2004‐01‐3088,   How Flies the Albatross  ‐ the Flight Mechanics of Dynamic Soaring, 2004 

• Myriad applications (some below included herein):
– Motor‐generator torque, speed, & current1

– Aerodynamic lift and drag coefficients
– Conic‐orbital position, velocity, and time2

– Gear geometry, mesh loss, & windage3

– Dynamic‐soaring flight mechanics4

– Heat transfer3, tribology, ...

Non‐dimensional parameters offer many
benefits, including compact characterization.
Consider a test matrix with just two variables,
both of which may have non‐linear effects. This
may require up to eight test points to
characterize, and if necessary modestly
extrapolate, the test results. Then adding more
variables the test matrix grows exponentially.
Taking advantage of non‐dimensional
parameters, the test matrix remains
comprehensive with far greater economy.

Perhaps the world’s oldest, well‐known
dimensionless parameter is “” representing of
course a circle’s circumference‐to‐diameter ratio.
A relatively modern parameter is the Reynolds
number, affecting fluid dynamics and heat
transfer. Myriad applications of non‐dimensional
parameters include the three studies in this
presentation.
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Rayleigh’s “Similitude” parameter synthesis
Application:  Empirical study of wing aerodynamic lift
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Rayleigh’s  Principle of Similitude  ሺNature, 1915ሻ would suggest:

L ൌ 𝑓 𝛼, Λ, 𝜌, v, b, 𝜇, a, c     𝑒௢  𝜌௘భ v௘మ b௘య 𝜇௫భ a௫మ c௫య

Exclude for now already‐dimensionless terms ( )
Arbitrarily select (, v, b) as “primary affectors,” with
a non‐singular units matrix for “auxiliary affectors”
( a, c) ; Then solve for the “auxiliary” exponents (xi)
in terms of the yet‐unknown empirical exponents (ei)
so that Rayleigh’s formula obtains dimensions of lift

Assume lift (L) depends on angle of attack (), mid‐chord
sweep (), air density (), airspeed (v), air viscosity (), speed
of sound (a), span (b), and average chord (c).

Lcabvunit

1001001kg

111‐111‐3m 

‐20‐1‐10‐10s

c

b




Rayleigh’s “similitude” method, circa 1915, condenses typically six
dimensional “affectors”* into three non‐dimensional groups. This
dramatically reduces the scope of test data needed to empirically
characterize the system at hand. Rayleigh postulates that a
“keystone” entity (aero lift in the present example) is proportional to
a series product of all suspected affectors, each raised to some
exponent, such that the series product obtains the same units as the
keystone entity. Typically three affectors together including units of
mass, length, and time are arbitrarily selected as “primary” and three
others then as “secondary or auxiliary.” If a temperature difference
applies it becomes a fourth auxiliary affector. Later operations allow
optional re‐arrangement to draw from experience and the “artistic”
aspect of the method’s “art and science” duality.

A units table is constructed, as shown above, and the “auxiliary”
portion thereof must represent a non‐singular rank‐3 or rank‐4
matrix. Subsequent matrix operations then solve for the auxiliary
exponents (xi) in terms of the yet‐unknown empirical exponents (ei).
Test data then reveals the typically non‐integer empirical exponents.
Often the empirical factor (eo) plays no visible role, as herein for our
study of gear aero windage.

The “renew” aspects of our “review” of Rayleigh’s method include
distinguishing primary from secondary entities, demonstration of
matrix operations, and introduction of “artistic” operations, including
group re‐arrangement options and ways to handle already‐
dimensionless affectors, in this case ( ).

* Not to be confused with the medical term “effector”
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Rayleigh’s “Similitude” dimensional analysis, continued 1
Application:  Empirical study of wing aerodynamic lift
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Re‐write as [A] [x] = [B] to solve for auxiliary exponents [xi] in terms of [ei] :

1 0 0 x1 =  1  ‐ e1

‐1 1 1 x2 =  1 + 3 e1 ‐ e2 ‐ e3

‐1 ‐1 0 x3 =  ‐2 + e2

Invert [A] and write [x]=[A‐1][B]:

x1 1 0 0 1  ‐ e1 1  ‐ e1

x2 = ‐1 0 ‐1 1 + 3 e1 ‐ e2 ‐ e3 = 1 + e1 ‐ e2 

x3 2 1 1 ‐2 + e2 1 + e1 ‐ e3

To ensure dimensional consistency, arrange all exponents in a 
set of equations, one for each applicable unit (kg, meter, sec):

kg: ( 1) e1 + ( 0) e2 + (0) e3 + ( 1) x1 + ( 0) x2 + (0) x3 = 1
m: (‐3) e1 + ( 1) e2 + (1) e3 + (‐1) x1 + ( 1) x2 + (1) x3 = 1
s: ( 0) e1 + (‐1) e2 + (0) e3 + (‐1) x1 + (‐1) x2 + (0) x3 = ‐2

v                b              a               c           L 

Here the units table of the previous slide has
been represented by a system of equations
representing all lift affectors and exponents,
with the units of lift represented by the
column vector at upper right. This system is
then converted to matrix form and the
auxiliary units matrix (middle‐left) is inverted
to solve for the auxiliary exponents (xi) in
terms of the empirical exponents (ei),
acknowledging that the empirical exponents
are not yet known.
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Rayleigh’s “Similitude” dimensional analysis, continued 2
Application:  Empirical study of wing aerodynamic lift
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Recall the original assertion:

321321,,,,,, xxxeee
oef cabvc)ab,v(L  

x1 1  ‐ e1

x2 = 1 + e1 ‐ e2

x3 1 + e1 ‐ e3

Recall from the
previous slide:

Three right‐hand groups characterize 
the left‐hand group. We now add in 
angle of attack (), as a fourth 
dimensionless right‐hand “group” Interesting, but not fully 

satisfactory ; Next, draw 
more upon the “artistic” 
aspect of the method

Interesting, but not fully 
satisfactory ; Next, draw 
more upon the “artistic” 
aspect of the method

c

b




L
𝜇 a c

ൌ   𝑒௢ 
𝜌ac

𝜇

 ௘భ

    
v
a

 ௘మ

    
b
c

 ௘య

  𝛼  ௘ర

Now combining the auxiliary exponent solution with what
would be Rayleigh’s postulate yields three right‐hand groups
efficiently characterizing one left‐hand group. Such groups,
preliminary at this point, can be named a “pseudo” lift
coefficient, pseudo Reynolds number, Mach number, and wing
geometric aspect ratio (span/average_chord). Applying “art
and experience,” and/or perhaps separate test data or theory,
we replace the geometric aspect ratio with its “equivalent
aspect ratio,” dividing by the cosine of the mid‐chord sweep
angle.*

We will next fine‐tune the correlation, but before doing so we
recall that any number raised to the 0th power becomes unity,
whereby any dimensionless group having an empirical
exponent near zero will thus have little or no effect on the lift
group. Furthermore any non‐zero empirical exponent may be
negative, as with Reynolds number were we instead to
characterize aerodynamic drag.

* Barnes, J.P.,   Configuration Aerodynamics ‐ Classical Methods Applied,  AIAA 
2020‐2708
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Rayleigh’s “Similitude” dimensional analysis, continued 3
Application:  Empirical study of wing aerodynamic lift
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Lift                   Reynolds        Mach      Aspect     AoA    
coefficient        number      number     ratio

eo ~ 0.017 ;  e1 ~ 0 ;  e2 ~ 0 ;  e3 ~ 0.85 ;   e4 ~ 1eo ~ 0.017 ;  e1 ~ 0 ;  e2 ~ 0 ;  e3 ~ 0.85 ;   e4 ~ 1

Factor by (a/v) ; then divide by (1/2) [vc/] [b/c]

2L
ఘ ୴మ ୠୡ

ൌ   𝑒௢  ఘ୴ୡ

ఓ

 ௘భ

      ୴

ୟ

 ௘మ ୠ/ୡ

ୡ௢௦
 ௘య

𝛼 ௘ర

୐

ఓ ୟ ୡ
ൌ 𝑒௢

ఘୟୡ

ఓ

 ௘భ

  ୴

ୟ

 ௘మ
  ୠ/ୡ

ୡ௢௦
 ௘య

ሾ𝛼ሿ ௘ర

“Art & science”: equivalent aspect ratio includes sweep

e3e3

Our calculations thus far yielded a “pseudo” Reynolds number which we
may argue is known from previous studies to be based on airspeed (v),
and not the speed of sound (a). Here, we are at liberty to invert every
ratio (a/v) or (b/c). We are also at liberty to factor or divide both sides of
the equation by any single or group entity. Strictly speaking, such
factoring or dividing both sides by any group adds or subtracts unity to
the empirical exponent for that group. However, we can more
conveniently allow all empiricals (ei) to “float” unchanged for now, but
soon to be revealed empirically. Provided the data is taken above a
critical Reynolds number, and below a critical Mach number, where
neither is found to affect lift, we discover the two related empirical
exponents to be zero.

To isolate the empirical exponent (e3), we cross plot test data (lower
right) for lift coefficient (linear range) versus equivalent aspect ratio.
Next, we observe that the exponent on angle of attack is unity. Finally,
the empirical factor (eo) is revealed by inspection to fit the test data. We
thus emerge with a compact mathematical model of low‐aspect‐ratio,
swept‐wing lift within stated limits. But the method also “warns” us of
possible regimes where changes in Reynolds or Mach number may affect
lift. Indeed, these appear at transonic Mach number and/or at “model
aircraft” Reynolds numbers.
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Optimized Regression -- Gear Windage 
P.H. Dawson's Test Data, All Gears

log G3
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Go =  Q / ( 3 D5 )

G1 = w / D 

G2 = D2 / 
G3 = h / D

e1  = 0.50

e2  = -0.23

log [ Go / G1
e1  G2

e2  ]

y =  1.265 +  1.805 x 

   +  0.2882 x2

Log { Go  / (G1
e1 G2

e2) }

Gear Windage Correlation Verification

Correlated Windage, Watts
10 100 1000

Measured
Windage

Watts

10

100

1000
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Spin gear of diam. (D), width (w), tooth height (h), speed () in air density (),  viscosity ()

For significant additional detail see the author’s tech. paper AGMA 97FTM11

Guess & perturb (e1 ; e2)
toward minimal scatter

Non‐dimensional characterization of gear aerodynamic windage

Dimensional postulate:     Q =  eo w e1 e2 h e3 D x1 x2 x3 ~ six “affectors”

Dimensionless: Q / ( 2 D5 )   =   eo [ w/D ] e1            [ D2 /  ] e2 [ h/D ] e3

Torque [  Go]           Face width [G1]     Re. No. [G2]     Tooth Height [G3]

Having applied Rayleigh’s method to a relatively‐
simple case, we now apply it to a case exhibiting more
typical complexities. The present example
characterizes gear aerodynamic “windage” or torque
required to spin the gear in a gaseous atmosphere
such as dry air. Rayleigh’s method condenses six
affectors of windage into three non‐dimensional
groups [G1 G2 G3] which, with their empirical
exponents (e1 e2 e3), characterize the non‐dimensional
windage torque group [Go]. The affectors are gear
diameter, rotational speed, tooth height, tooth width,
air density, and air viscosity.

We have test data for all the dimensionless groups, but
we do not yet know the three empirical exponents
corresponding to the three right‐hand groups. Our
suggested and applied approach guesses with
systematic variation the empirical exponents (e1 e2)
which combined with [Go G1 G2] isolate, with a certain
amount of scatter to be minimized, the effects of [G3].
Typically such exponents are less than unity, but
Reynolds number will have a negative exponent
thereof. At the lower right the final correlation exhibits
a very good match to the test data. Curiously, the
postulated empirical factor (eo) makes no obvious
appearance, apparently “buried” in the result.
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Conic‐section orbits:  Isaac Newton Chronology

Year Age Development or Event
1665 23 Trinity math degree, avoids plague
1665 23 Invents differential calculus
1666 24 Invents Integr. calculus & gravitation
1668 26 Cambridge faculty appointment
1672 30 Elected Royal Society Fellow
1684 42 Leibniz invents/publishes calculus
1685 43 Sphere point‐mass equivalent
1686 44 Book: Principia (proofs geometric)
1702 60 Newton publishes his own calculus
1708 66 Knighted
1727 85 Quoted, shortly before death:

“I do not know what I may appear to the world, but to myself I seem to
have been only like a boy playing on the seashore, and diverting myself in
now and then finding a smoother pebble or a prettier shell than ordinary,
while the great ocean of truth lay all undiscovered before me.”

“I do not know what I may appear to the world, but to myself I seem to
have been only like a boy playing on the seashore, and diverting myself in
now and then finding a smoother pebble or a prettier shell than ordinary,
while the great ocean of truth lay all undiscovered before me.”

Isaac Newton entered college with little or no knowledge of
mathematics, and graduated at age 23 from Trinity as a supreme
master of the discipline. Based on his work at Trinity and at home
in Lincolnshire, where he retreated to avoid the plague, he
invented differential calculus in his first year out of college. The
next year he invented integral calculus7, and his concept for
gravitation. Secretive and socially dysfunctional8,9, Newton
originally kept his calculus to himself, and in publishing his
epochal book Principia at the age of 44, employed entirely
geometric proofs. Only well after Leibniz10 independently
discovered and published calculus did Newton reveal his own
calculus, via his book Optix, at the age of 60. Nevertheless,
Newton’s mastery of geometric proofs in Principia, explaining
numerous phenomena including conic‐orbital shapes, orbital
times, and earth‐moon effects, remains today arguably
unparalleled11. Newton’s legacy is marred by his accusing Leibniz
of plagiarizing calculus and by his refusal to support awarding a
prize well earned by John Harrison for invention of the first clock
of sufficient accuracy to enable accurate determination of
longitude at sea.

07   Gamow, G., The Great Physicists From Galileo to Einstein, Dover, 1988

08   Jardine, L., Ingenious Pursuits, Building the Scientific Revolution, Anchor, 2000

09   Hawking, S.W., A Brief History of Time, Bantam, p. 181‐182

10   Singer, C., A Short History of Science to the Nineteenth Century, Dover 1997

11 F.R. Moulton, Introduction to Celestial Mechanics, Dover, 1970, p.67,97,190
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Conic‐section orbits:  From Principia to the present day

“... if any body is acted upon by a...force
that is inversely proportional to the
square of the distance...from the center,
this body will move in...one of the conics
having a focus in the center of forces.”

Newton, Principia, Book 1, Section 3, 1686

Conic section, Principia,
Book 1, Section 4, 1686

e ≡ SB/BK
= SC/CL

Symbols and Definitions
 Product of central mass (M) & universal gravitational constant (G)
r Radius from the central body center to the satellite
 True anomaly (angle from closest passage)
v Satellite velocity relative to the central body
 Flight path angle (see sketch)
h Angular momentum per unit satellite mass
t Time from periapsis (closest passage)
 Total kinetic & potential energy per unit satellite mass
e Eccentricity of conic section (italic Vs. natural‐log base, e)

Newton stated in Principia that any body
acted upon solely by a force inversely
proportional to the square of the
distance from the force center would
travel along one of the conics, with the
force center residing at the conic‐section
focus. At lower right we sketch a conic
orbit annotated with contemporary
nomenclature, and at lower left we list
the various orbital quantities.
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Analytical derivation of orbital non‐dimensional parameters

Original Analysis by
F.R. Moulton, 1914

Added herein:
• Velocity Vs. position
• Time from Periapsis
• Non-dimensional r,v,t
• Kepler’s Problem Sol’n

Substitutions, incl. 
d/dt = h/r2 ; conic-
section definition,
and diff. eqn.sol’n   
yield orbital shape:

r ൌ ௛
మ

ఓ
/ (1 ൅ 𝑒 𝑐𝑜𝑠𝜃)

𝑟ሷ ൌ െ
𝜇
𝑟ଶ ൅ 𝑟𝜃ሶ ଶ

Also,    dt ൌ 
௥మ

௛
𝑑𝜃 thus:

𝑡 ൌ
ℎଷ

𝜇ଶ  න
𝑑𝜃

1 ൅ 𝑒 𝑐𝑜𝑠𝜃 ଶ

ఏ

଴
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Phil  Barnes

Here we follow F. R. Moulton11 to analytically derive conic‐
section orbital shape. Added to that is our own study of time
from periapsis. The process begins with the radial acceleration
formula, then applies various substitutions, recalls the
definition of a conic section, and solves a differential equation,
all yielding orbital radius versus position. Next we relate time
and position with an equation which can be numerically or
directly integrated. By inspection, the non‐dimensional radius
and time emerge when the two boxed equations at left are re‐
arranged for only eccentricity (e) and true anomaly () to
remain on the right‐hand side. Further arithmetic, included in
the author’s hand‐written notes at right, reveals the non‐
dimensional velocity and non‐dimensional orbital energy.

11 F.R. Moulton, Introduction to Celestial Mechanics,
Dover, 1970 p. 80‐82, 93, 67, 97, 190
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Conic‐section orbits:  Dimensional & non‐dimensional terms

Entity               Dimensional Non-dimensional

Radius             r ൌ ሺhଶ/𝜇ሻ / ሺ1 ൅ 𝑒 cos 𝜃ሻ    R ≡ 𝑟𝜇/hଶ ൌ  1/ ሺ1 ൅ 𝑒 cos 𝜃ሻ

Velocity          v ൌ 2ሺ𝜀 ൅ 𝜇/𝑟ሻ                      V ≡ vh/𝜇 ൌ  1 ൅ 𝑒ଶ ൅ 2𝑒 cos 𝜃

Flt. angle        𝛾 ൌ cosെ1  ሾh/ሺrvሻሿ               𝛾 ൌ cosିଵሾ 1/ሺRVሻሿ

Energy           𝜀 ≡ ሺvଶ/2ሻ െ ሺ𝜇/𝑟ሻ                 E ≡ 𝜀 hଶ/𝜇ଶ ൌ ሺVଶ/2ሻ െ ሺ1/Rሻ

                         𝜀 ൌ  𝜇ଶሺ𝑒ଶ െ 1ሻ/ሺ2hଶሻ          E ൌ ሺ𝑒ଶെ1ሻ/2

[1/(2)]
T=

T=

[1/(2)]

[1/(2)]

[1/(2)] [1/(2)]

e

T ≡
t𝜇ଶ

2𝜋hଷ ൌ
1

2𝜋
න

d𝜃
ሺ1 ൅ 𝑒 cos 𝜃ሻଶ

ఏ

଴
Time     t ൌ ሺhଷ/𝜇ଶሻ න

d𝜃
ሺ1 ൅ 𝑒 cos 𝜃ሻଶ

ఏ

଴

W.T. Thomson, Introduction to
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Together with Augenstein12, Bate et.al.13, and others we are
motivated for various reasons to non‐dimensionalize the orbital
parameters. Our own formulation herein is unique in its simplicity
and combined compact graphical characterization of elliptical and
hyperbolic orbits together. Other motivations include dovetailing
with the patched‐conic method, expedited solution of Kepler’s
problem, and avoidance of mixed‐unit scenarios (recall the Mars
Lander failure).

At upper left we show the original dimensional quantities (r, v, ,
t). At upper are their non‐dimensional counterparts (R, V, E, T), in
terms of the eccentricity (e) and true anomaly (). As might be
expected for a circular orbit (e=0) the non‐dimensional radius (R),
non‐dimensional velocity (V), and non‐dimensional period (T) are
all unity.

To define non‐dimensional time (T) from periapsis we can
arbitrarily divide by (2), making the circular orbital period unity.
Our original paper (appended herein) had numerically integrated
(T), but after its publication we learned that such can be directly
integrated14. In the slide above, the time‐related formulas are
shown at lower left for elliptical and hyperbolic orbits, and at lower
right for a parabolic orbit.

12 Augenstein, B.W., Dynamics Problems With Satellite Orbit Control,
Trans. ASME, Nov. 1959
13 Bate, Mueller, White, Fundamentals of Astrodynamics, Dover, 1971, p.
41
14 Thomson, W.T., Introduction to Space Dynamics, Dover, 1986, p. 73
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Conic‐section orbits:   Shape, velocity, and time Vs. position

vh/

o

Non‐dim. velocity
elliptical orbits

vh/

o

Non‐dim. velocity
hyperbolic orbits

t2/(2h3)

o

Non‐dim. time
any conic orbit

Conic
section
orbital
shapes

Here we show the non‐dimensional shape,
velocity, and time from periapsis for conic‐section
orbits. Again for the circular orbit, the non‐
dimensional radius, velocity, and period are all
unity.

At lower right the non‐dimensional time is
presented as the independent parameter, although
it has been calculated dependent on the
eccentricity and true anomaly. This
characterization, with either time or position taken
as the independent variable, expedites conic
orbital analysis, including the iterative solution of
Kepler’s Problem, to find the change in position,
given the change in time.

16
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Conic‐section orbits:   Lunar free‐return trajectory

Earth‐moon patched‐conic approximation
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Hyperbolic trajectory relative to the moon
Flyby at perilune in lieu of orbital insertion
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Here we apply Newton’s conic‐section orbits in the form
of a lunar free‐return trajectory15 which, in taking the
shape of a distorted but symmetrical figure‐8, gives the
astronauts a good chance of a safe return home in the
event that the lunar‐orbit‐insertion (LOI) burn at
perilune fails to happen. But the return trajectory does
not by itself guarantee a safe return because of
numerous other risks, for example the narrow window
of an acceptable earth‐atmospheric re‐entry angle. The
author’s technical paper, embedded on slide 18 (AAS
kept no record of it) applies the earth‐moon orbit non‐
dimensional orbital parameters to analyze the trajectory.
In this last chart we’ll focus on handling also the
dimensional terms in our computer code.

In the diagram above, with the orbital shape shown to
scale, the spacecraft undergoes trans‐lunar injection
(TLI) at point‐1 with a 6.5‐min burn starting from a 300‐
km parking orbit. The spacecraft then coasts 2.58 days in
a high‐eccentricity (ese=0.972) earth orbit to reach the
lunar sphere of influence (SOI) at point‐2, where the
spacecraft at moon‐relative velocity (vsm2_kms) begins
a hyperbolic passage of moon‐relative eccentricity
(esm=1.69). The spacecraft then travels 16.9‐hr from SOI
entry to perilune at point‐3 where an optional multi‐
minute burn decelerates the spacecraft for lunar‐orbit
insertion (LOI).

17

If such burn does not happen, the spacecraft enters a free
return to earth at point‐4 whereby the spacecraft will have
undergone a gravitational flyby at the special conditions
which do not alter the earth‐relative orbital energy of the
spacecraft.

The analysis above applies the patched‐conic approximation
which has numerous opportunities for error accumulation.
For example, the earth and moon together rotate about a
common center of gravity which resides inside the earth at
about ¾ of the earth’s radius. In practice, the mission
incorporates course corrections, typically including one at the
point of entry into the lunar SOI. Without such correction,
perilune altitude may differ from that desired.

An Apollo astronaut, orbiting the moon alone, was alarmed
to perceive his spacecraft altitude at perilune to be below the
highest peaks in the lunar terrain. He quickly advanced the
throttle, but had not yet secured himself in a seat, whereby
he found himself thrown to the back of the spacecraft as it
accelerated16. Fortunately, he regained control. Spaceflight is
often unforgiving, and beginning with orbital analysis, failure
is not an option, to quote Apollo 13 Flight Director Gene
Kranz.

15 Kaplan, M.H.,Modern Spacecraft Dynamics…, Wiley, 1976, p. 107
16 Worden, A., Falling to Earth, Smithsonian, p. 184‐185
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*  After this paper was written, it was  
    found that the  time group can be 
    integrated, as in Thomson's book,  
   "Introduction to Space Mechanics," 
    Dover, 1986, page 73. 
 

 





























CONCLUSIONS 

Figure 14 
Injection Conditions and Symmetry 

of Lunar Free-Return Trajectory 
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1. The dimensionless orbital parameters (R,V,E, and T) offer 
compact mathematical and graphical presentation of Keple­
rian orbital characteristics, as well as efficient analy­
sis of conic and patched-conic orbits. 

2. Numerical solution of Kepler's problem confirms the accu­
racy of the flight time predicted by the auxiliary anoma­
lies, even at near-parabolic eccentricities. 

3. When iterative methods, including those using the auxi­
liary anomalies, are unable to converge on a solution to 
Kepler's problem, numerical integration offers a reliable, 
non-iterative solution. 

4. Patched-conic orbits can be conveniently analyzed with the 
aid of Cartesian vector operations on the dimensional 
orbital parameters (r) and (v). 
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